Hybrid Instance-Aware Temporal Fusion for Online Video Instance Segmentation

Author:

Li Xiang,Wang Jinglu,Li Xiao,Lu Yan

Abstract

Recently, transformer-based image segmentation methods have achieved notable success against previous solutions. While for video domains, how to effectively model temporal context with the attention of object instances across frames remains an open problem. In this paper, we propose an online video instance segmentation framework with a novel instance-aware temporal fusion method. We first leverage the representation, \ie, a latent code in the global context (instance code) and CNN feature maps to represent instance- and pixel-level features. Based on this representation, we introduce a cropping-free temporal fusion approach to model the temporal consistency between video frames. Specifically, we encode global instance-specific information in the instance code and build up inter-frame contextual fusion with hybrid attentions between the instance codes and CNN feature maps. Inter-frame consistency between the instance codes is further enforced with order constraints. By leveraging the learned hybrid temporal consistency, we are able to directly retrieve and maintain instance identities across frames, eliminating the complicated frame-wise instance matching in prior methods. Extensive experiments have been conducted on popular VIS datasets, i.e. Youtube-VIS-19/21. Our model achieves the best performance among all online VIS methods. Notably, our model also eclipses all offline methods when using the ResNet-50 backbone.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-supervised Multi-Modal Video Forgery Attack Detection;2023 IEEE Wireless Communications and Networking Conference (WCNC);2023-03

2. OWS-Seg: Online Weakly Supervised Video Instance Segmentation via Contrastive Learning;Artificial Neural Networks and Machine Learning – ICANN 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3