DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy

Author:

Cheng Anda,Wang Jiaxing,Zhang Xi Sheryl,Chen Qiang,Wang Peisong,Cheng Jian

Abstract

Training deep neural networks (DNNs) for meaningful differential privacy (DP) guarantees severely degrades model utility. In this paper, we demonstrate that the architecture of DNNs has a significant impact on model utility in the context of private deep learning, whereas its effect is largely unexplored in previous studies. In light of this missing, we propose the very first framework that employs neural architecture search to automatic model design for private deep learning, dubbed as DPNAS. To integrate private learning with architecture search, a DP-aware approach is introduced for training candidate models composed on a delicately defined novel search space. We empirically certify the effectiveness of the proposed framework. The searched model DPNASNet achieves state-of-the-art privacy/utility trade-offs, e.g., for the privacy budget of (epsilon, delta)=(3, 1e-5), our model obtains test accuracy of 98.57% on MNIST, 88.09% on FashionMNIST, and 68.33% on CIFAR-10. Furthermore, by studying the generated architectures, we provide several intriguing findings of designing private-learning-friendly DNNs, which can shed new light on model design for deep learning with differential privacy.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differentially Private Video Activity Recognition;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

2. Differentially-Private Neural Network Training with Private Features and Public Labels;Lecture Notes in Computer Science;2024

3. Evaluating Contribution of Training Samples for Differentially Private Machine Learning;Computational and Experimental Simulations in Engineering;2023-12-01

4. DPMLBench: Holistic Evaluation of Differentially Private Machine Learning;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

5. Divide-and-conquer the NAS puzzle in resource-constrained federated learning systems;Neural Networks;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3