Anchor DETR: Query Design for Transformer-Based Detector

Author:

Wang Yingming,Zhang Xiangyu,Yang Tong,Sun Jian

Abstract

In this paper, we propose a novel query design for the transformer-based object detection. In previous transformer-based detectors, the object queries are a set of learned embeddings. However, each learned embedding does not have an explicit physical meaning and we cannot explain where it will focus on. It is difficult to optimize as the prediction slot of each object query does not have a specific mode. In other words, each object query will not focus on a specific region. To solve these problems, in our query design, object queries are based on anchor points, which are widely used in CNN-based detectors. So each object query focuses on the objects near the anchor point. Moreover, our query design can predict multiple objects at one position to solve the difficulty: ``one region, multiple objects''. In addition, we design an attention variant, which can reduce the memory cost while achieving similar or better performance than the standard attention in DETR. Thanks to the query design and the attention variant, the proposed detector that we called Anchor DETR, can achieve better performance and run faster than the DETR with 10x fewer training epochs. For example, it achieves 44.2 AP with 19 FPS on the MSCOCO dataset when using the ResNet50-DC5 feature for training 50 epochs. Extensive experiments on the MSCOCO benchmark prove the effectiveness of the proposed methods. Code is available at https://github.com/megvii-research/AnchorDETR.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3