FairFoody: Bringing In Fairness in Food Delivery

Author:

Gupta Anjali,Yadav Rahul,Nair Ashish,Chakraborty Abhijnan,Ranu Sayan,Bagchi Amitabha

Abstract

Along with the rapid growth and rise to prominence of food delivery platforms, concerns have also risen about the terms of employment of the ``gig workers'' underpinning this growth. Our analysis on data derived from a real-world food delivery platform across three large cities from India show that there is significant inequality in the money delivery agents earn. In this paper, we formulate the problem of fair income distribution among agents while also ensuring timely food delivery. We establish that the problem is not only NP-hard but also inapproximable in polynomial time. We overcome this computational bottleneck through a novel matching algorithm called FairFoody. Extensive experiments over real-world food delivery datasets show FairFoody imparts up to 10 times improvement in equitable income distribution when compared to baseline strategies, while also ensuring minimal impact on customer experience.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Promoting Two-sided Fairness in Dynamic Vehicle Routing Problems;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

2. Meal delivery services: Current practices, challenges, and future directions;IEEE Potentials;2024-01

3. Towards a Greener and Fairer Transportation System: A Survey of Route Recommendation Techniques;ACM Transactions on Intelligent Systems and Technology;2023-12-19

4. On the Effect of Mixed Intelligence on Gig-based Food Delivery;Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geo-Privacy and Data Utility for Smart Societies;2023-11-13

5. Fairness and Sustainability in Multistakeholder Tourism Recommender Systems;Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3