Prune and Tune Ensembles: Low-Cost Ensemble Learning with Sparse Independent Subnetworks

Author:

Whitaker Tim,Whitley Darrell

Abstract

Ensemble Learning is an effective method for improving generalization in machine learning. However, as state-of-the-art neural networks grow larger, the computational cost associated with training several independent networks becomes expensive. We introduce a fast, low-cost method for creating diverse ensembles of neural networks without needing to train multiple models from scratch. We do this by first training a single parent network. We then create child networks by cloning the parent and dramatically pruning the parameters of each child to create an ensemble of members with unique and diverse topologies. We then briefly train each child network for a small number of epochs, which now converge significantly faster when compared to training from scratch. We explore various ways to maximize diversity in the child networks, including the use of anti-random pruning and one-cycle tuning. This diversity enables "Prune and Tune" ensembles to achieve results that are competitive with traditional ensembles at a fraction of the training cost. We benchmark our approach against state of the art low-cost ensemble methods and display marked improvement in both accuracy and uncertainty estimation on CIFAR-10 and CIFAR-100.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3