Top-Down Deep Clustering with Multi-Generator GANs

Author:

Mello Daniel P. M. de,Assunção Renato M.,Murai Fabricio

Abstract

Deep clustering (DC) leverages the representation power of deep architectures to learn embedding spaces that are optimal for cluster analysis. This approach filters out low-level information irrelevant for clustering and has proven remarkably successful for high dimensional data spaces. Some DC methods employ Generative Adversarial Networks (GANs), motivated by the powerful latent representations these models are able to learn implicitly. In this work, we propose HC-MGAN, a new technique based on GANs with multiple generators (MGANs), which have not been explored for clustering. Our method is inspired by the observation that each generator of a MGAN tends to generate data that correlates with a sub-region of the real data distribution. We use this clustered generation to train a classifier for inferring from which generator a given image came from, thus providing a semantically meaningful clustering for the real distribution. Additionally, we design our method so that it is performed in a top-down hierarchical clustering tree, thus proposing the first hierarchical DC method, to the best of our knowledge. We conduct several experiments to evaluate the proposed method against recent DC methods, obtaining competitive results. Last, we perform an exploratory analysis of the hierarchical clustering tree that highlights how accurately it organizes the data in a hierarchy of semantically coherent patterns.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning by competing: Competitive multi-generator based adversarial learning;Applied Soft Computing;2023-10

2. HMGAN;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-09-27

3. Interpretable Generative Modeling Using a Hierarchical Topological VAE;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3