Simple Unsupervised Graph Representation Learning

Author:

Mo Yujie,Peng Liang,Xu Jie,Shi Xiaoshuang,Zhu Xiaofeng

Abstract

In this paper, we propose a simple unsupervised graph representation learning method to conduct effective and efficient contrastive learning. Specifically, the proposed multiplet loss explores the complementary information between the structural information and neighbor information to enlarge the inter-class variation, as well as adds an upper bound loss to achieve the finite distance between positive embeddings and anchor embeddings for reducing the intra-class variation. As a result, both enlarging inter-class variation and reducing intra-class variation result in small generalization error, thereby obtaining an effective model. Furthermore, our method removes widely used data augmentation and discriminator from previous graph contrastive learning methods, meanwhile available to output low-dimensional embeddings, leading to an efficient model. Experimental results on various real-world datasets demonstrate the effectiveness and efficiency of our method, compared to state-of-the-art methods. The source codes are released at https://github.com/YujieMo/SUGRL.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When decoupled GCN meets group discrimination: A special graph contrastive learning framework;Neurocomputing;2024-09

2. Enhancing Contrastive Learning on Graphs with Node Similarity;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Topology-monitorable Contrastive Learning on Dynamic Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. MHGNN: Multi-view fusion based Heterogeneous Graph Neural Network;Applied Intelligence;2024-06-20

5. A Multi-Graph Fusion Framework for Patient Representation Learning;2024 IEEE 12th International Conference on Healthcare Informatics (ICHI);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3