MLink: Linking Black-Box Models for Collaborative Multi-Model Inference

Author:

Yuan Mu,Zhang Lan,Li Xiang-Yang

Abstract

The cost efficiency of model inference is critical to real-world machine learning (ML) applications, especially for delay-sensitive tasks and resource-limited devices. A typical dilemma is: in order to provide complex intelligent services (e.g. smart city), we need inference results of multiple ML models, but the cost budget (e.g. GPU memory) is not enough to run all of them. In this work, we study underlying relationships among black-box ML models and propose a novel learning task: model linking. Model linking aims to bridge the knowledge of different black-box models by learning mappings (dubbed model links) between their output spaces. Based on model links, we developed a scheduling algorithm, named MLink. Through collaborative multi-model inference enabled by model links, MLink can improve the accuracy of obtained inference results under the cost budget. We evaluated MLink on a multi-modal dataset with seven different ML models and two real-world video analytics systems with six ML models and 3,264 hours of video. Experimental results show that our proposed model links can be effectively built among various black-box models. Under the budget of GPU memory, MLink can save 66.7% inference computations while preserving 94% inference accuracy, which outperforms multi-task learning, deep reinforcement learning-based scheduler and frame filtering baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HeteroPush: Communication-Efficient Video Analytics by Scheduling Heterogeneous Filters;2023 9th International Conference on Big Data Computing and Communications (BigCom);2023-08-04

2. MultiSense: Cross-labelling and Learning Human Activities Using Multimodal Sensing Data;ACM Transactions on Sensor Networks;2023-04-17

3. Efficient Deep Ensemble Inference via Query Difficulty-dependent Task Scheduling;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. MLink: Linking Black-Box Models from Multiple Domains for Collaborative Inference;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023

5. Quality-aided Annotation Service Selection in MLaaS Market;2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS);2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3