JFB: Jacobian-Free Backpropagation for Implicit Networks

Author:

Fung Samy Wu,Heaton Howard,Li Qiuwei,Mckenzie Daniel,Osher Stanley,Yin Wotao

Abstract

A promising trend in deep learning replaces traditional feedforward networks with implicit networks. Unlike traditional networks, implicit networks solve a fixed point equation to compute inferences. Solving for the fixed point varies in complexity, depending on provided data and an error tolerance. Importantly, implicit networks may be trained with fixed memory costs in stark contrast to feedforward networks, whose memory requirements scale linearly with depth. However, there is no free lunch --- backpropagation through implicit networks often requires solving a costly Jacobian-based equation arising from the implicit function theorem. We propose Jacobian-Free Backpropagation (JFB), a fixed-memory approach that circumvents the need to solve Jacobian-based equations. JFB makes implicit networks faster to train and significantly easier to implement, without sacrificing test accuracy. Our experiments show implicit networks trained with JFB are competitive with feedforward networks and prior implicit networks given the same number of parameters.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of contextual optimization methods for decision-making under uncertainty;European Journal of Operational Research;2025-01

2. Lightweight and Flexible Deep Equilibrium Learning for CSI Feedback in FDD Massive MIMO;2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN);2024-05-05

3. Efficient and generalizable cross-patient epileptic seizure detection through a spiking neural network;Frontiers in Neuroscience;2024-01-10

4. DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging;IEEE Transactions on Medical Imaging;2024-01

5. Deep Equilibrium Object Detection;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3