SCALoss: Side and Corner Aligned Loss for Bounding Box Regression

Author:

Zheng Tu,Zhao Shuai,Liu Yang,Liu Zili,Cai Deng

Abstract

Bounding box regression is an important component in object detection. Recent work achieves promising performance by optimizing the Intersection over Union (IoU). However, IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes, and the model could easily ignore these simple cases. In this paper, we propose Side Overlap (SO) loss by maximizing the side overlap of two bounding boxes, which puts more penalty for low overlapping bounding box cases. Besides, to speed up the convergence, the Corner Distance (CD) is added into the objective function. Combining the Side Overlap and Corner Distance, we get a new regression objective function, Side and Corner Align Loss (SCALoss). The SCALoss is well-correlated with IoU loss, which also benefits the evaluation metric but produces more penalty for low-overlapping cases. It can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed. Experiments on COCO, PASCAL VOC, and LVIS benchmarks show that SCALoss can bring consistent improvement and outperform ln loss and IoU based loss with popular object detectors such as YOLOV3, SSD, Faster-RCNN. Code is available at: https://github.com/Turoad/SCALoss.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPSNet: A Selected Pyramidal Shape-Constrained Network for SAR Target Detection;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Diag-IoU Loss for Object Detection;IEEE Transactions on Circuits and Systems for Video Technology;2023-12

3. Loss Function for Training Models of Segmentation of Document Images;Programming and Computer Software;2023-12

4. Table detection for visually rich document images;Knowledge-Based Systems;2023-12

5. High-density foreground object detection in optical remote sensing images via semantic fusion and box alignment;The Visual Computer;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3