Author:
Zheng Tu,Zhao Shuai,Liu Yang,Liu Zili,Cai Deng
Abstract
Bounding box regression is an important component in object detection. Recent work achieves promising performance by optimizing the Intersection over Union (IoU). However, IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes, and the model could easily ignore these simple cases. In this paper, we propose Side Overlap (SO) loss by maximizing the side overlap of two bounding boxes, which puts more penalty for low overlapping bounding box cases. Besides, to speed up the convergence, the Corner Distance (CD) is added into the objective function. Combining the Side Overlap and Corner Distance, we get a new regression objective function, Side and Corner Align Loss (SCALoss). The SCALoss is well-correlated with IoU loss, which also benefits the evaluation metric but produces more penalty for low-overlapping cases. It can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed. Experiments on COCO, PASCAL VOC, and LVIS benchmarks show that SCALoss can bring consistent improvement and outperform ln loss and IoU based loss with popular object detectors such as YOLOV3, SSD, Faster-RCNN. Code is available at: https://github.com/Turoad/SCALoss.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献