AlphaHoldem: High-Performance Artificial Intelligence for Heads-Up No-Limit Poker via End-to-End Reinforcement Learning

Author:

Zhao Enmin,Yan Renye,Li Jinqiu,Li Kai,Xing Junliang

Abstract

Heads-up no-limit Texas hold’em (HUNL) is the quintessential game with imperfect information. Representative priorworks like DeepStack and Libratus heavily rely on counter-factual regret minimization (CFR) and its variants to tackleHUNL. However, the prohibitive computation cost of CFRiteration makes it difficult for subsequent researchers to learnthe CFR model in HUNL and apply it in other practical applications. In this work, we present AlphaHoldem, a high-performance and lightweight HUNL AI obtained with an end-to-end self-play reinforcement learning framework. The proposed framework adopts a pseudo-siamese architecture to directly learn from the input state information to the output actions by competing the learned model with its different historical versions. The main technical contributions include anovel state representation of card and betting information, amultitask self-play training loss function, and a new modelevaluation and selection metric to generate the final model.In a study involving 100,000 hands of poker, AlphaHoldemdefeats Slumbot and DeepStack using only one PC with threedays training. At the same time, AlphaHoldem only takes 2.9milliseconds for each decision-making using only a singleGPU, more than 1,000 times faster than DeepStack. We release the history data among among AlphaHoldem, Slumbot,and top human professionals in the author’s GitHub repository to facilitate further studies in this direction.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capitalizing on the Opponent's Uncertainty in Reconnaissance Blind Chess;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Transformer in reinforcement learning for decision-making: a survey;Frontiers of Information Technology & Electronic Engineering;2024-06

3. Clicked:Curriculum Learning Connects Knowledge Distillation for Four-Player No-Limit Texas Hold’em Poker;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

4. Survey of Opponent Modeling: from Game AI to Combat Deduction;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

5. An improved deep Q-Network algorithm for the prediction of non-competitive bidding in Bridge Game;Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3