Zero-Shot Commonsense Question Answering with Cloze Translation and Consistency Optimization

Author:

Dou Zi-Yi,Peng Nanyun

Abstract

Commonsense question answering (CQA) aims to test if models can answer questions regarding commonsense knowledge that everyone knows. Prior works that incorporate external knowledge bases have shown promising results, but knowledge bases are expensive to construct and are often limited to a fixed set of relations. In this paper, we instead focus on better utilizing the implicit knowledge stored in pre-trained language models. While researchers have found that the knowledge embedded in pre-trained language models can be extracted by having them fill in the blanks of carefully designed prompts for relation extraction and text classification, it remains unclear if we can adopt this paradigm in CQA where the inputs and outputs take much more flexible forms. To this end, we investigate four translation methods that can translate natural questions into cloze-style sentences to better solicit commonsense knowledge from language models, including a syntactic-based model, an unsupervised neural model, and two supervised neural models. In addition, to combine the different translation methods, we propose to encourage consistency among model predictions on different translated questions with unlabeled data. We demonstrate the effectiveness of our methods on three CQA datasets in zero-shot settings. We show that our methods are complementary to a knowledge base improved model, and combining them can lead to state-of-the-art zero-shot performance. Analyses also reveal distinct characteristics of the different cloze translation methods and provide insights on why combining them can lead to great improvements. Code/dataset is available at https://github.com/PlusLabNLP/zero_shot_cqa.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3