LUNA: Localizing Unfamiliarity Near Acquaintance for Open-Set Long-Tailed Recognition

Author:

Cai Jiarui,Wang Yizhou,Hsu Hung-Min,Hwang Jenq-Neng,Magrane Kelsey,Rose Craig S

Abstract

The predefined artificially-balanced training classes in object recognition have limited capability in modeling real-world scenarios where objects are imbalanced-distributed with unknown classes. In this paper, we discuss a promising solution to the Open-set Long-Tailed Recognition (OLTR) task utilizing metric learning. Firstly, we propose a distribution-sensitive loss, which weighs more on the tail classes to decrease the intra-class distance in the feature space. Building upon these concentrated feature clusters, a local-density-based metric is introduced, called Localizing Unfamiliarity Near Acquaintance (LUNA), to measure the novelty of a testing sample. LUNA is flexible with different cluster sizes and is reliable on the cluster boundary by considering neighbors of different properties. Moreover, contrary to most of the existing works that alleviate the open-set detection as a simple binary decision, LUNA is a quantitative measurement with interpretable meanings. Our proposed method exceeds the state-of-the-art algorithm by 4-6% in the closed-set recognition accuracy and 4% in F-measure under the open-set on the public benchmark datasets, including our own newly introduced fine-grained OLTR dataset about marine species (MS-LT), which is the first naturally-distributed OLTR dataset revealing the genuine genetic relationships of the classes.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoftmaxU: Open softmax to be aware of unknowns;Engineering Applications of Artificial Intelligence;2024-07

2. A Novel Multidomain Contrastive-Coding-Based Open-Set Domain Generalization Framework for Machinery Fault Diagnosis;IEEE Transactions on Industrial Informatics;2024-04

3. RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph Classification;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. Class-Conditional Sharpness-Aware Minimization for Deep Long-Tailed Recognition;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. ME-D2N: Multi-Expert Domain Decompositional Network for Cross-Domain Few-Shot Learning;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3