Trading Complexity for Sparsity in Random Forest Explanations

Author:

Audemard Gilles,Bellart Steve,Bounia Louènas,Koriche Frédéric,Lagniez Jean-Marie,Marquis Pierre

Abstract

Random forests have long been considered as powerful model ensembles in machine learning. By training multiple decision trees, whose diversity is fostered through data and feature subsampling, the resulting random forest can lead to more stable and reliable predictions than a single decision tree. This however comes at the cost of decreased interpretability: while decision trees are often easily interpretable, the predictions made by random forests are much more difficult to understand, as they involve a majority vote over multiple decision trees. In this paper, we examine different types of reasons that explain "why" an input instance is classified as positive or negative by a Boolean random forest. Notably, as an alternative to prime-implicant explanations taking the form of subset-minimal implicants of the random forest, we introduce majoritary reasons which are subset-minimal implicants of a strict majority of decision trees. For these abductive explanations, the tractability of the generation problem (finding one reason) and the optimization problem (finding one minimum-sized reason) are investigated. Unlike prime-implicant explanations, majoritary reasons may contain redundant features. However, in practice, prime-implicant explanations - for which the identification problem is DP-complete - are slightly larger than majoritary reasons that can be generated using a simple linear-time greedy algorithm. They are also significantly larger than minimum-sized majoritary reasons which can be approached using an anytime Partial MaxSAT algorithm.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Logic-based explanations of imbalance price forecasts using boosted trees;Electric Power Systems Research;2024-10

2. Learning Model Agnostic Explanations via Constraint Programming;Lecture Notes in Computer Science;2024

3. Logic for Explainable AI;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

4. Incorporating I Ching Knowledge Into Prediction Task via Data Mining;Journal of Database Management;2023-04-21

5. Logic-Based Explainability in Machine Learning;Reasoning Web. Causality, Explanations and Declarative Knowledge;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3