AXM-Net: Implicit Cross-Modal Feature Alignment for Person Re-identification

Author:

Farooq Ammarah,Awais Muhammad,Kittler Josef,Khalid Syed Safwan

Abstract

Cross-modal person re-identification (Re-ID) is critical for modern video surveillance systems. The key challenge is to align cross-modality representations conforming to semantic information present for a person and ignore background information. This work presents a novel convolutional neural network (CNN) based architecture designed to learn semantically aligned cross-modal visual and textual representations. The underlying building block, named AXM-Block, is a unified multi-layer network that dynamically exploits the multi-scale knowledge from both modalities and re-calibrates each modality according to shared semantics. To complement the convolutional design, contextual attention is applied in the text branch to manipulate long-term dependencies. Moreover, we propose a unique design to enhance visual part-based feature coherence and locality information. Our framework is novel in its ability to implicitly learn aligned semantics between modalities during the feature learning stage. The unified feature learning effectively utilizes textual data as a super-annotation signal for visual representation learning and automatically rejects irrelevant information. The entire AXM-Net is trained end-to-end on CUHK-PEDES data. We report results on two tasks, person search and cross-modal Re-ID. The AXM-Net outperforms the current state-of-the-art (SOTA) methods and achieves 64.44% Rank@1 on the CUHK-PEDES test set. It also outperforms by >10% for cross-viewpoint text-to-image Re-ID scenarios on CrossRe-ID and CUHK-SYSU datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-modal semantic aligning and neighbor-aware completing for robust text–image person retrieval;Information Fusion;2024-12

2. Data compensation and feature fusion for sketch based person retrieval;Journal of Visual Communication and Image Representation;2024-09

3. Cross-modal feature learning and alignment network for text–image person re-identification;Journal of Visual Communication and Image Representation;2024-08

4. MACA: Memory-aided Coarse-to-fine Alignment for Text-based Person Search;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Text-to-Image Vehicle Re-Identification: Multi-Scale Multi-View Cross-Modal Alignment Network and a Unified Benchmark;IEEE Transactions on Intelligent Transportation Systems;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3