Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning

Author:

Cooray Thilini,Cheung Ngai-Man

Abstract

Unsupervised graph-level representation learning plays a crucial role in a variety of tasks such as molecular property prediction and community analysis, especially when data annotation is expensive. Currently, most of the best-performing graph embedding methods are based on Infomax principle. The performance of these methods highly depends on the selection of negative samples and hurt the performance, if the samples were not carefully selected. Inter-graph similarity-based methods also suffer if the selected set of graphs for similarity matching is low in quality. To address this, we focus only on utilizing the current input graph for embedding learning. We are motivated by an observation from real-world graph generation processes where the graphs are formed based on one or more global factors which are common to all elements of the graph (e.g., topic of a discussion thread, solubility level of a molecule). We hypothesize extracting these common factors could be highly beneficial. Hence, this work proposes a new principle for unsupervised graph representation learning: Graph-wise Common latent Factor EXtraction (GCFX). We further propose a deep model for GCFX, deepGCFX, based on the idea of reversing the above-mentioned graph generation process which could explicitly extract common latent factors from an input graph and achieve improved results on downstream tasks to the current state-of-the-art. Through extensive experiments and analysis, we demonstrate that, while extracting common latent factors is beneficial for graph-level tasks to alleviate distractions caused by local variations of individual nodes or local neighbourhoods, it also benefits node-level tasks by enabling long-range node dependencies, especially for disassortative graphs.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-head Variational Graph Autoencoder Constrained by Sum-product Networks;Proceedings of the ACM Web Conference 2023;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3