DarkVisionNet: Low-Light Imaging via RGB-NIR Fusion with Deep Inconsistency Prior

Author:

Jin Shuangping,Yu Bingbing,Jing Minhao,Zhou Yi,Liang Jiajun,Ji Renhe

Abstract

RGB-NIR fusion is a promising method for low-light imaging. However, high-intensity noise in low-light images amplifies the effect of structure inconsistency between RGB-NIR images, which fails existing algorithms. To handle this, we propose a new RGB-NIR fusion algorithm called Dark Vision Net (DVN) with two technical novelties: Deep Structure and Deep Inconsistency Prior (DIP). The Deep Structure extracts clear structure details in deep multiscale feature space rather than raw input space, which is more robust to noisy inputs. Based on the deep structures from both RGB and NIR domains, we introduce the DIP to leverage the structure inconsistency to guide the fusion of RGB-NIR. Benefits from this, the proposed DVN obtains high-quality low-light images without the visual artifacts. We also propose a new dataset called Dark Vision Dataset (DVD), consisting of aligned RGB-NIR image pairs, as the first public RGB-NIR fusion benchmark. Quantitative and qualitative results on the proposed benchmark show that DVN significantly outperforms other comparison algorithms in PSNR and SSIM, especially in extremely low light conditions.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SGDFormer: One-stage transformer-based architecture for cross-spectral stereo image guided denoising;Information Fusion;2025-01

2. VIFNet: An end-to-end visible–infrared fusion network for image dehazing;Neurocomputing;2024-09

3. 计算成像技术在信息复原及增强中的研究进展(特邀);Laser & Optoelectronics Progress;2024

4. Filling the Gap: Enhancing Ultra-Low Light Image Brightness Through Multi-Band NIR Estimation;2023 IEEE International Conference on Visual Communications and Image Processing (VCIP);2023-12-04

5. Low-Light Image Enhancement via Distillation of NIR-to-RGB Conversion Knowledge;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3