Similarity Search for Efficient Active Learning and Search of Rare Concepts

Author:

Coleman Cody,Chou Edward,Katz-Samuels Julian,Culatana Sean,Bailis Peter,Berg Alexander C.,Nowak Robert,Sumbaly Roshan,Zaharia Matei,Yalniz I. Zeki

Abstract

Many active learning and search approaches are intractable for large-scale industrial settings with billions of unlabeled examples. Existing approaches search globally for the optimal examples to label, scaling linearly or even quadratically with the unlabeled data. In this paper, we improve the computational efficiency of active learning and search methods by restricting the candidate pool for labeling to the nearest neighbors of the currently labeled set instead of scanning over all of the unlabeled data. We evaluate several selection strategies in this setting on three large-scale computer vision datasets: ImageNet, OpenImages, and a de-identified and aggregated dataset of 10 billion publicly shared images provided by a large internet company. Our approach achieved similar mAP and recall as the traditional global approach while reducing the computational cost of selection by up to three orders of magnitude, enabling web-scale active learning.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast Similarity Matrix Calibration Method with Incomplete Query;Proceedings of the ACM Web Conference 2024;2024-05-13

2. Active Batch Sampling for Multi-label Classification with Binary User Feedback;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

3. SeeSaw: Interactive Ad-hoc Search Over Image Databases;Proceedings of the ACM on Management of Data;2023-12-08

4. Active Learning for Open-Set Annotation Using Contrastive Query Strategy;Neural Information Processing;2023-11-14

5. Agile Modeling: From Concept to Classifier in Minutes;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3