Delving into Sample Loss Curve to Embrace Noisy and Imbalanced Data

Author:

Jiang Shenwang,Li Jianan,Wang Ying,Huang Bo,Zhang Zhang,Xu Tingfa

Abstract

Corrupted labels and class imbalance are commonly encountered in practically collected training data, which easily leads to over-fitting of deep neural networks (DNNs). Existing approaches alleviate these issues by adopting a sample re-weighting strategy, which is to re-weight sample by designing weighting function. However, it is only applicable for training data containing only either one type of data biases. In practice, however, biased samples with corrupted labels and of tailed classes commonly co-exist in training data. How to handle them simultaneously is a key but under-explored problem. In this paper, we find that these two types of biased samples, though have similar transient loss, have distinguishable trend and characteristics in loss curves, which could provide valuable priors for sample weight assignment. Motivated by this, we delve into the loss curves and propose a novel probe-and-allocate training strategy: In the probing stage, we train the network on the whole biased training data without intervention, and record the loss curve of each sample as an additional attribute; In the allocating stage, we feed the resulting attribute to a newly designed curve-perception network, named CurveNet, to learn to identify the bias type of each sample and assign proper weights through meta-learning adaptively. The training speed of meta learning also blocks its application. To solve it, we propose a method named skip layer meta optimization (SLMO) to accelerate training speed by skipping the bottom layers. Extensive synthetic and real experiments well validate the proposed method, which achieves state-of-the-art performance on multiple challenging benchmarks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPORT: A Subgraph Perspective on Graph Classification with Label Noise;ACM Transactions on Knowledge Discovery from Data;2024-08-28

2. CTRL: Clustering Training Losses for Label Error Detection;IEEE Transactions on Artificial Intelligence;2024-08

3. Confidence Calibration of a Medical Imaging Classification System That is Robust to Label Noise;IEEE Transactions on Medical Imaging;2024-06

4. Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification;International Journal of Computer Vision;2024-02-05

5. Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection;IEEE Transactions on Multimedia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3