LAGConv: Local-Context Adaptive Convolution Kernels with Global Harmonic Bias for Pansharpening

Author:

Jin Zi-Rong,Zhang Tian-Jing,Jiang Tai-Xiang,Vivone Gemine,Deng Liang-Jian

Abstract

Pansharpening is a critical yet challenging low-level vision task that aims to obtain a higher-resolution image by fusing a multispectral (MS) image and a panchromatic (PAN) image. While most pansharpening methods are based on convolutional neural network (CNN) architectures with standard convolution operations, few attempts have been made with context-adaptive/dynamic convolution, which delivers impressive results on high-level vision tasks. In this paper, we propose a novel strategy to generate local-context adaptive (LCA) convolution kernels and introduce a new global harmonic (GH) bias mechanism, exploiting image local specificity as well as integrating global information, dubbed LAGConv. The proposed LAGConv can replace the standard convolution that is context-agnostic to fully perceive the particularity of each pixel for the task of remote sensing pansharpening. Furthermore, by applying the LAGConv, we provide an image fusion network architecture, which is more effective than conventional CNN-based pansharpening approaches. The superiority of the proposed method is demonstrated by extensive experiments implemented on a wide range of datasets compared with state-of-the-art pansharpening methods. Besides, more discussions testify that the proposed LAGConv outperforms recent adaptive convolution techniques for pansharpening.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-branch and triple-attention network for pan-sharpening;Applied Intelligence;2024-06-19

2. Pan-sharpening via intrinsic decomposition knowledge distillation;Pattern Recognition;2024-05

3. Remote Sensing Pan-Sharpening via Cross-Spectral–Spatial Fusion Network;IEEE Geoscience and Remote Sensing Letters;2024

4. Rethinking Pan-Sharpening via Spectral-Band Modulation;IEEE Transactions on Geoscience and Remote Sensing;2024

5. SSCAConv: Self-Guided Spatial-Channel Adaptive Convolution for Image Fusion;IEEE Geoscience and Remote Sensing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3