Visual Sound Localization in the Wild by Cross-Modal Interference Erasing

Author:

Liu Xian,Qian Rui,Zhou Hang,Hu Di,Lin Weiyao,Liu Ziwei,Zhou Bolei,Zhou Xiaowei

Abstract

The task of audiovisual sound source localization has been well studied under constrained scenes, where the audio recordings are clean. However, in real world scenarios, audios are usually contaminated by off screen sound and background noise. They will interfere with the procedure of identifying desired sources and building visual sound connections, making previous studies nonapplicable. In this work, we propose the Interference Eraser (IEr) framework, which tackles the problem of audiovisual sound source localization in the wild. The key idea is to eliminate the interference by redefining and carving discriminative audio representations. Specifically, we observe that the previous practice of learning only a single audio representation is insufficient due to the additive nature of audio signals. We thus extend the audio representation with our Audio Instance Identifier module, which clearly distinguishes sounding instances when audio signals of different volumes are unevenly mixed. Then we erase the influence of the audible but off screen sounds and the silent but visible objects by a Cross modal Referrer module with cross modality distillation. Quantitative and qualitative evaluations demonstrate that our framework achieves superior results on sound localization tasks, especially under real world scenarios.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross Pseudo-Labeling for Semi-Supervised Audio-Visual Source Localization;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Audio-Visual Segmentation by Exploring Cross-Modal Mutual Semantics;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. An improved TF-GSC for dual-microphone interference suppression in the specific direction;Multimedia Tools and Applications;2023-06-22

4. Egocentric Auditory Attention Localization in Conversations;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection;2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3