Selecting Optimal Context Sentences for Event-Event Relation Extraction

Author:

Man Hieu,Ngo Nghia Trung,Van Linh Ngo,Nguyen Thien Huu

Abstract

Understanding events entails recognizing the structural and temporal orders between event mentions to build event structures/graphs for input documents. To achieve this goal, our work addresses the problems of subevent relation extraction (SRE) and temporal event relation extraction (TRE) that aim to predict subevent and temporal relations between two given event mentions/triggers in texts. Recent state-of-the-art methods for such problems have employed transformer-based language models (e.g., BERT) to induce effective contextual representations for input event mention pairs. However, a major limitation of existing transformer-based models for SRE and TRE is that they can only encode input texts of limited length (i.e., up to 512 sub-tokens in BERT), thus unable to effectively capture important context sentences that are farther away in the documents. In this work, we introduce a novel method to better model document-level context with important context sentences for event-event relation extraction. Our method seeks to identify the most important context sentences for a given entity mention pair in a document and pack them into shorter documents to be consume entirely by transformer-based language models for representation learning. The REINFORCE algorithm is employed to train models where novel reward functions are presented to capture model performance, and context-based and knowledge-based similarity between sentences for our problem. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3