Coarse-to-Fine Generative Modeling for Graphic Layouts

Author:

Jiang Zhaoyun,Sun Shizhao,Zhu Jihua,Lou Jian-Guang,Zhang Dongmei

Abstract

Even though graphic layout generation has attracted growing attention recently, it is still challenging to synthesis realistic and diverse layouts, due to the complicated element relationships and varied element arrangements. In this work, we seek to improve the performance of layout generation by incorporating the concept of regions, which consist of a smaller number of elements and appears like a simple layout, into the generation process. Specifically, we leverage Variational Autoencoder (VAE) as the overall architecture and decompose the decoding process into two stages. The first stage predicts representations for regions, and the second stage fills in the detailed position for each element within the region based on the predicted region representation. Compared to prior studies that merely abstract the layout into a list of elements and generate all the element positions in one go, our approach has at least two advantages. First, by the two-stage decoding, our approach decouples the complex layout generation task into several simple layout generation tasks, which reduces the problem difficulty. Second, the predicted regions can help the model roughly know what the graphic layout looks like and serve as global context to improve the generation of detailed element positions. Qualitative and quantitative experiments demonstrate that our approach significantly outperforms the existing methods, especially on the complex graphic layouts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iris: a multi-constraint graphic layout generation system;Frontiers of Information Technology & Electronic Engineering;2024-07

2. Unsupervised Graphic Layout Grouping with Transformers;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

3. GTLayout: Learning General Trees for Structured Grid Layout Generation;Lecture Notes in Computer Science;2024

4. Interactive Story Visualization with Multiple Characters;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

5. VT-Scanner: Layout Similarity on Smartphone and Its Application for Robust Scene Recognition;2023 International Conference on Wireless Communications and Signal Processing (WCSP);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3