Evidential Neighborhood Contrastive Learning for Universal Domain Adaptation

Author:

Chen Liang,Lou Yihang,He Jianzhong,Bai Tao,Deng Minghua

Abstract

Universal domain adaptation (UniDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain without any constraints on the label sets. However, domain shift and category shift make UniDA extremely challenging, mainly attributed to the requirement of identifying both shared “known” samples and private “unknown” samples. Previous methods barely exploit the intrinsic manifold structure relationship between two domains for feature alignment, and they rely on the softmax-based scores with class competition nature to detect underlying “unknown” samples. Therefore, in this paper, we propose a novel evidential neighborhood contrastive learning framework called TNT to address these issues. Specifically, TNT first proposes a new domain alignment principle: semantically consistent samples should be geometrically adjacent to each other, whether within or across domains. From this criterion, a cross-domain multi-sample contrastive loss based on mutual nearest neighbors is designed to achieve common category matching and private category separation. Second, toward accurate “unknown” sample detection, TNT introduces a class competition-free uncertainty score from the perspective of evidential deep learning. Instead of setting a single threshold, TNT learns a category-aware heterogeneous threshold vector to reject diverse “unknown” samples. Extensive experiments on three benchmarks demonstrate that TNT significantly outperforms previous state-of-the-art UniDA methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3