Author:
Keros Alexandros D,Nanda Vidit,Subr Kartic
Abstract
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations between vertices at different resolutions, all at once. This concept is central towards detection of higher dimensional topological features of data, features to which graphs, encoding only pairwise relationships, remain oblivious. While attempts have been made to extend Graph Neural Networks (GNNs) to a simplicial complex setting, the methods do not inherently exploit, or reason about, the underlying topological structure of the network. We propose a graph convolutional model for learning functions parametrized by the k-homological features of simplicial complexes. By spectrally manipulating their combinatorial k-dimensional Hodge Laplacians, the proposed model enables learning topological features of the underlying simplicial complexes, specifically, the distance of each k-simplex from the nearest "optimal" k-th homology generator, effectively providing an alternative to homology localization.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey of Vectorization Methods in Topological Data Analysis;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12
2. Simplex2vec Backward: From Vectors Back to Simplicial Complex;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21