Cosine Model Watermarking against Ensemble Distillation

Author:

Charette Laurent,Chu Lingyang,Chen Yizhou,Pei Jian,Wang Lanjun,Zhang Yong

Abstract

Many model watermarking methods have been developed to prevent valuable deployed commercial models from being stealthily stolen by model distillations. However, watermarks produced by most existing model watermarking methods can be easily evaded by ensemble distillation, because averaging the outputs of multiple ensembled models can significantly reduce or even erase the watermarks. In this paper, we focus on tackling the challenging task of defending against ensemble distillation. We propose a novel watermarking technique named CosWM to achieve outstanding model watermarking performance against ensemble distillation. CosWM is not only elegant in design, but also comes with desirable theoretical guarantees. Our extensive experiments on public data sets demonstrate the excellent performance of CosWM and its advantages over the state-of-the-art baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Model Watermarking for Image Processing Networks via Structure Consistency;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. Revisiting Black-box Ownership Verification for Graph Neural Networks;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

3. From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying;Proceedings of the VLDB Endowment;2024-04

4. Customized and Robust Deep Neural Network Watermarking;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

5. Isolation and Induction: Training Robust Deep Neural Networks against Model Stealing Attacks;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3