Towards End-to-End Image Compression and Analysis with Transformers

Author:

Bai Yuanchao,Yang Xu,Liu Xianming,Jiang Junjun,Wang Yaowei,Ji Xiangyang,Gao Wen

Abstract

We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application. Instead of placing an existing Transformer-based image classification model directly after an image codec, we aim to redesign the Vision Transformer (ViT) model to perform image classification from the compressed features and facilitate image compression with the long-term information from the Transformer. Specifically, we first replace the patchify stem (i.e., image splitting and embedding) of the ViT model with a lightweight image encoder modelled by a convolutional neural network. The compressed features generated by the image encoder are injected convolutional inductive bias and are fed to the Transformer for image classification bypassing image reconstruction. Meanwhile, we propose a feature aggregation module to fuse the compressed features with the selected intermediate features of the Transformer, and feed the aggregated features to a deconvolutional neural network for image reconstruction. The aggregated features can obtain the long-term information from the self-attention mechanism of the Transformer and improve the compression performance. The rate-distortion-accuracy optimization problem is finally solved by a two-step training strategy. Experimental results demonstrate the effectiveness of the proposed model in both the image compression and the classification tasks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Coding Framework and Benchmark Towards Low-Bitrate Video Understanding;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-08

2. Unified and Scalable Deep Image Compression Framework for Human and Machine;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-17

3. Region-of-Interest-Based Video Coding for Machines;2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW);2024-07-15

4. Compressed-Domain Vision Transformer for Image Classification;IEEE Journal on Emerging and Selected Topics in Circuits and Systems;2024-06

5. Deep Learning Guided Video Compression for Machine Vision Tasks;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3