Spiking Neural Networks with Improved Inherent Recurrence Dynamics for Sequential Learning

Author:

Ponghiran Wachirawit,Roy Kaushik

Abstract

Spiking neural networks (SNNs) with leaky integrate and fire (LIF) neurons, can be operated in an event-driven manner and have internal states to retain information over time, providing opportunities for energy-efficient neuromorphic computing, especially on edge devices. Note, however, many representative works on SNNs do not fully demonstrate the usefulness of their inherent recurrence (membrane potential retaining information about the past) for sequential learning. Most of the works train SNNs to recognize static images by artificially expanded input representation in time through rate coding. We show that SNNs can be trained for practical sequential tasks by proposing modifications to a network of LIF neurons that enable internal states to learn long sequences and make their inherent recurrence resilient to the vanishing gradient problem. We then develop a training scheme to train the proposed SNNs with improved inherent recurrence dynamics. Our training scheme allows spiking neurons to produce multi-bit outputs (as opposed to binary spikes) which help mitigate the mismatch between a derivative of spiking neurons' activation function and a surrogate derivative used to overcome spiking neurons' non-differentiability. Our experimental results indicate that the proposed SNN architecture on TIMIT and LibriSpeech 100h speech recognition dataset yields accuracy comparable to that of LSTMs (within 1.10% and 0.36%, respectively), but with 2x fewer parameters than LSTMs. The sparse SNN outputs also lead to 10.13x and 11.14x savings in multiplication operations compared to GRUs, which are generally considered as a lightweight alternative to LSTMs, on TIMIT and LibriSpeech 100h datasets, respectively.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SNN-BERT: Training-efficient Spiking Neural Networks for energy-efficient BERT;Neural Networks;2024-12

2. Gated parametric neuron for spike-based audio recognition;Neurocomputing;2024-12

3. Understanding the functional roles of modelling components in spiking neural networks;Neuromorphic Computing and Engineering;2024-08-27

4. A 71.2-μW Speech Recognition Accelerator With Recurrent Spiking Neural Network;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-07

5. Adaptive Multi-Level Firing for Direct Training Deep Spiking Neural Networks;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3