Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive Person Re-identification

Author:

Han Jian,Li Ya-Li,Wang Shengjin

Abstract

Clustering-based unsupervised domain adaptive (UDA) person re-identification (ReID) reduces exhaustive annotations. However, owing to unsatisfactory feature embedding and imperfect clustering, pseudo labels for target domain data inherently contain an unknown proportion of wrong ones, which would mislead feature learning. In this paper, we propose an approach named probabilistic uncertainty guided progressive label refinery (P2LR) for domain adaptive person re-identification. First, we propose to model the labeling uncertainty with the probabilistic distance along with ideal single-peak distributions. A quantitative criterion is established to measure the uncertainty of pseudo labels and facilitate the network training. Second, we explore a progressive strategy for refining pseudo labels. With the uncertainty-guided alternative optimization, we balance between the exploration of target domain data and the negative effects of noisy labeling. On top of a strong baseline, we obtain significant improvements and achieve the state-of-the-art performance on four UDA ReID benchmarks. Specifically, our method outperforms the baseline by 6.5% mAP on the Duke2Market task, while surpassing the state-of-the-art method by 2.5% mAP on the Market2MSMT task. Code is available at: https://github.com/JeyesHan/P2LR.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3