Author:
Zhang Peizhen,Kang Zijian,Yang Tong,Zhang Xiangyu,Zheng Nanning,Sun Jian
Abstract
In this paper, we propose the first self-distillation framework for general object detection, termed LGD (Label-Guided self-Distillation). Previous studies rely on a strong pretrained teacher to provide instructive knowledge that could be unavailable in real-world scenarios. Instead, we generate an instructive knowledge by inter-and-intra relation modeling among objects, requiring only student representations and regular labels. Concretely, our framework involves sparse label-appearance encoding, inter-object relation adaptation and intra-object knowledge mapping to obtain the instructive knowledge. They jointly form an implicit teacher at training phase, dynamically dependent on labels and evolving student representations. Modules in LGD are trained end-to-end with student detector and are discarded in inference. Experimentally, LGD obtains decent results on various detectors, datasets, and extensive tasks like instance segmentation. For example in MS-COCO dataset, LGD improves RetinaNet with ResNet-50 under 2x single-scale training from 36.2% to 39.0% mAP (+ 2.8%). It boosts much stronger detectors like FCOS with ResNeXt-101 DCN v2 under 2x multi-scale training from 46.1% to 47.9% (+ 1.8%).
Compared with a classical teacher-based method FGFI, LGD not only performs better without requiring pretrained teacher but also reduces 51% training cost beyond inherent student learning.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献