Author:
Lasecki Walter,Kamar Ece,Bohus Dan
Abstract
A major challenge in developing dialog systems is obtaining realistic data to train the systems for specific domains. We study the opportunity for using crowdsourcing methods to collect dialog datasets. Specifically, we introduce ChatCollect, a system that allows researchers to collect conversations focused around definable tasks from pairs of workers in the crowd. We demonstrate that varied and in-depth dialogs can be collected using this system, then discuss ongoing work on creating a crowd-powered system for parsing semantic frames. We then discuss research opportunities in using this approach to train and improve automated dialog systems in the future.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献