Under the Spotlight: Web Tracking in Indian Partisan News Websites

Author:

Agarwal Vibhor,Vekaria Yash,Agarwal Pushkal,Mahapatra Sangeeta,Set Shounak,Muthiah Sakthi Balan,Sastry Nishanth,Kourtellis Nicolas

Abstract

India is experiencing intense political partisanship and sectarian divisions. The paper performs, to the best of our knowledge, the first comprehensive analysis on the Indian online news media with respect to tracking and partisanship. We build a dataset of 103 online, mostly mainstream news websites. With the help of two experts, alongside data from the Media Ownership Monitor, we label these websites according to their partisanship (Left, Right, or Centre). We study and compare user tracking on these sites with different metrics: numbers of cookies, cookie synchronization, device fingerprinting, and invisible pixel-based tracking. We find that Left and Centre websites serve more cookies than Right-leaning websites. However, through cookie synchronization, more user IDs are synchronized in Left websites than Right or Centre. Canvas fingerprinting is used similarly by Left and Right, and less by Centre. Invisible pixel-based tracking is 50% more intense in Centre-leaning websites than Right, and 25% more than Left. Desktop versions of news websites deliver more cookies than their mobile counterparts. A handful of third-parties are tracking users in most websites in this study. This paper demonstrates the intensity of Web tracking happening in Indian news websites and discusses implications for research on overall privacy of users visiting partisan news websites in India.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Third-Party Data Leaks and Dark Patterns in Finnish Political Websites;Proceedings of the International Conference on Computer Systems and Technologies 2024;2024-06-14

2. “Way back then”: A Data-driven View of 25+ years of Web Evolution;Proceedings of the ACM Web Conference 2022;2022-04-25

3. GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates;Proceedings of the ACM Web Conference 2022;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3