What the Language You Tweet Says About Your Occupation

Author:

Hu Tianran,Xiao Haoyuan,Luo Jiebo,Nguyen Thuy-vy Thi

Abstract

Many aspects of people's lives are proven to be deeply connected to their jobs. In this paper, we first investigate the distinct characteristics of major occupation categories based on tweets. From multiple social media platforms, we gather several types of user information. From users' LinkedIn webpages, we learn their proficiencies. To overcome the ambiguity of self-reported information, a soft clustering approach is applied to extract occupations from crowd-sourced data. Eight job categories are extracted, including Marketing, Administrator, Start-up, Editor, Software Engineer, Public Relation, Office Clerk, and Designer. Meanwhile, users' posts on Twitter provide cues for understanding their linguistic styles, interests, and personalities. Our results suggest that people of different jobs have unique tendencies in certain language styles and interests. Our results also clearly reveal distinctive levels in terms of Big Five Traits for different jobs. Finally, a classifier is built to predict job types based on the features extracted from tweets. A high accuracy indicates a strong discrimination power of language features for job prediction task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3