Follow the “Mastodon”: Structure and Evolution of a Decentralized Online Social Network

Author:

Zignani Matteo,Gaito Sabrina,Rossi Gian Paolo

Abstract

In this paper we present a dataset containing both the network of the "follow" relationships and its growth in terms of new connections and users, all which we obtained by mining the decentralized online social network named Mastodon. The dataset is combined with usage statistics and meta-data (geographical location and allowed topics) about the servers comprising the platform's architecture. These server are called instances. The paper also analyzes the overall structure of the Mastodon social network, focusing on its diversity w.r.t. other commercial microblogging platforms such as Twitter. Finally, we investigate how the instance-like paradigm influences the connections among the users. The newest and fastest-growing microblogging platform, Mastodon is set to become a valid alternative to established platforms like Twitter. The interest in Mastodon is mainly motivated as follows: a) the platform adopts an advertisement and recommendation-free business model; b) the decentralized architecture makes it possible to shift the control over user contents and data from the platform to the users; c) it adopts a community-like paradigm from both user and architecture viewpoints. In fact, Mastodon is composed of interconnected communities, placed on different servers; in addition, each single instance, with specific topics and languages, is independently owned and moderated. The released dataset paves the way to a number of research activities, which range from classic social network analysis to the modeling of social network dynamics and platform adoption in the early stage of the service. This data would also enable community detection validation since each instance hinges on specific topics and, lastly, the study of the interplay between the physical architecture of the platform and the social network it supports.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3