Identifying Leading Indicators of Product Recalls from Online Reviews Using Positive Unlabeled Learning and Domain Adaptation

Author:

Bhat Shreesh,Culotta Aron

Abstract

Consumer protection agencies are charged with safeguarding the public from hazardous products, but the thousands of products under their jurisdiction make it challenging to identify and respond to consumer complaints quickly. In this paper, we propose a system to mine Amazon.com reviews to identify products that may pose safety or health hazards. Since labeled data for this task are scarce, our approach combines positive unlabeled learning with domain adaptation to train a classifier from consumer complaints submitted to an online government portal. We find that our approach results in an absolute F1 score improvement of 8% over the best competing baseline. Furthermore, when we apply the classifier to Amazon reviews of known recalled products, we identify safety hazard reports prior to the recall date for 45% of the products. This suggests that the system may be able to provide an early warning system to alert consumers to hazardous products before an official recall is announced.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Negative Review or Complaint? Exploring Interpretability in Financial Complaints;IEEE Transactions on Computational Social Systems;2024-06

2. AbCoRD: Exploiting multimodal generative approach for Aspect-based Complaint and Rationale Detection;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. Investigating the Impact of Multimodality and External Knowledge in Aspect-level Complaint and Sentiment Analysis;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. Online Reviews Are Leading Indicators of Changes in K-12 School Attributes;Proceedings of the ACM Web Conference 2023;2023-04-30

5. Knowing What and How: A Multi-modal Aspect-Based Framework for Complaint Detection;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3