CEAM: The Effectiveness of Cyclic and Ephemeral Attention Models of User Behavior on Social Platforms

Author:

Chowdhury Farhan Asif,Liu Yozen,Saha Koustuv,Vincent Nicholas,Neves Leonardo,Shah Neil,Bos Maarten W.

Abstract

To improve the user experience as well as business outcomes, social platforms aim to predict user behavior. To this end, recurrent models are often used to predict a user's next behavior based on their most recent behavior. However, people have habits and routines, making it plausible to predict their behavior from more than just their most recent activity. Our work focuses on the interplay between ephemeral and cyclical components of user behaviors. By utilizing user activity data from social platform Snapchat, we uncover cyclic and ephemeral usage patterns on a per user level. Based on our findings, we imbued recurrent models with awareness: we augment an RNN with a cyclic module to complement traditional RNNs that model ephemeral behaviors and allow a flexible weighting of the two for the prediction task. We conducted extensive experiments to evaluate our model's performance on four user behavior prediction tasks on the Snapchat platform. We achieve improved results on each task compared against existing methods, using this simple, but important insight in user behavior: Both cyclical and ephemeral components matter. We show that in some situations and for some people, ephemeral components may be more helpful for predicting behavior, while for others and in other situations, cyclical components may carry more weight.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-aware prediction of active and passive user engagement: Evidence from a large online social platform;Journal of Big Data;2024-08-08

2. General-Purpose User Modeling with Behavioral Logs: A Snapchat Case Study;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. TIM: Temporal Interaction Model in Notification System;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

4. Quantifying the Systematic Bias in the Accessibility and Inaccessibility of Web Scraping Content From URL-Logged Web-Browsing Digital Trace Data;Social Science Computer Review;2023-11-29

5. Focus Time for Wellbeing and Work Engagement of Information Workers;Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3