The Effect of People Recommenders on Echo Chambers and Polarization

Author:

Cinus Federico,Minici Marco,Monti Corrado,Bonchi Francesco

Abstract

The effects of online social media on critical issues, such as polarization and misinformation, are under scrutiny due to the disruptive consequences that these phenomena can have on our societies. Among the algorithms routinely used by social media platforms, people-recommender systems are of special interest, as they directly contribute to the evolution of the social network structure, affecting the information and the opinions users are exposed to. In this paper, we propose a novel framework to assess the effect of people recommenders on the evolution of opinions. Our proposal is based on Monte Carlo simulations combining link recommendation and opinion-dynamics models. In order to control initial conditions, we define a random network model to generate graphs with opinions, with tunable amounts of modularity and homophily. Finally, we join these elements into a methodology able to study the causal relationship between the recommender system and the echo chamber effect. Our method can also assess if such relationships are statistically significant. We also show how such a framework can be used to measure, by means of simulations, the impact of different intervention strategies. Our thorough experimentation shows that people recommenders can in fact lead to a significant increase in echo chambers. However, this happens only if there is considerable initial homophily in the network. Also, we find that if the network already contains echo chambers, the effect of the recommendation algorithm is negligible. Such findings are robust to two very different opinion dynamics models, a bounded confidence model and an epistemological model.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competitive net influence maximization on intergroup debate effect;Information Sciences;2024-10

2. Personalized Beyond-accuracy Calibration in Recommendation;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

3. Development of an Equity Strategy for Recommendation Systems;Anais do V Workshop sobre as Implicações da Computação na Sociedade (WICS 2024);2024-07-21

4. SARDINE: Simulator for Automated Recommendation in Dynamic and Interactive Environments;ACM Transactions on Recommender Systems;2024-06-05

5. Echo Chambers in the Age of Algorithms: An Audit of Twitter’s Friend Recommender System;ACM Web Science Conference;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3