Community-Based Fact-Checking on Twitter’s Birdwatch Platform

Author:

Pröllochs Nicolas

Abstract

Misinformation undermines the credibility of social media and poses significant threats to modern societies. As a countermeasure, Twitter has recently introduced "Birdwatch," a community-driven approach to address misinformation on Twitter. On Birdwatch, users can identify tweets they believe are misleading, write notes that provide context to the tweet and rate the quality of other users' notes. In this work, we empirically analyze how users interact with this new feature. For this purpose, we collect all Birdwatch notes and ratings between the introduction of the feature in early 2021 and end of July 2021. We then map each Birdwatch note to the fact-checked tweet using Twitter's historical API. In addition, we use text mining methods to extract content characteristics from the text explanations in the Birdwatch notes (e.g., sentiment). Our empirical analysis yields the following main findings: (i) users more frequently file Birdwatch notes for misleading than not misleading tweets. These misleading tweets are primarily reported because of factual errors, lack of important context, or because they treat unverified claims as facts. (ii) Birdwatch notes are more helpful to other users if they link to trustworthy sources and if they embed a more positive sentiment. (iii) The social influence of the author of the source tweet is associated with differences in the level of user consensus. For influential users with many followers, Birdwatch notes yield a lower level of consensus among users and community-created fact checks are more likely to be seen as being incorrect and argumentative. Altogether, our findings can help social media platforms to formulate guidelines for users on how to write more helpful fact checks. At the same time, our analysis suggests that community-based fact-checking faces challenges regarding opinion speculation and polarization among the user base.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3