Author:
Barlas Pınar,Kyriakou Kyriakos,Kleanthous Styliani,Otterbacher Jahna
Abstract
Image analysis algorithms have become an indispensable tool in our information ecosystem, facilitating new forms of visual communication and information sharing. At the same time, they enable large-scale socio-technical research which would otherwise be difficult to carry out. However, their outputs may exhibit social bias, especially when analyzing people images. Since most algorithms are proprietary and opaque, we propose a method of auditing their outputs for social biases. To be able to compare how algorithms interpret a controlled set of people images, we collected descriptions across six image tagging algorithms. In order to compare these results to human behavior, we also collected descriptions on the same images from crowdworkers in two anglophone regions. The dataset we present consists of tags from these eight taggers, along with a typology of concepts, and a python script to calculate vector scores for each image and tagger. Using our methodology, researchers can see the behaviors of the image tagging algorithms and compare them to those of crowdworkers. Beyond computer vision auditing, the dataset of humanand machine-produced tags, the typology, and the vectorization method can be used to explore a range of research questions related to both algorithmic and human behaviors.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献