Learning Structured Embeddings of Knowledge Bases

Author:

Bordes Antoine,Weston Jason,Collobert Ronan,Bengio Yoshua

Abstract

Many Knowledge Bases (KBs) are now readily available and encompass colossal quantities of information thanks to either a long-term funding effort (e.g. WordNet, OpenCyc) or a collaborative process (e.g. Freebase, DBpedia). However, each of them is based on a different rigorous symbolic framework which makes it hard to use their data in other systems. It is unfortunate because such rich structured knowledge might lead to a huge leap forward in many other areas of AI like nat- ural language processing (word-sense disambiguation, natural language understanding, ...), vision (scene classification, image semantic annotation, ...) or collaborative filtering. In this paper, we present a learning process based on an innovative neural network architecture designed to embed any of these symbolic representations into a more flexible continuous vector space in which the original knowledge is kept and enhanced. These learnt embeddings would allow data from any KB to be easily used in recent machine learning meth- ods for prediction and information retrieval. We illustrate our method on WordNet and Freebase and also present a way to adapt it to knowledge extraction from raw text.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3