Abductive Markov Logic for Plan Recognition
-
Published:2011-08-04
Issue:1
Volume:25
Page:1069-1075
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Singla Parag,Mooney Raymond
Abstract
Plan recognition is a form of abductive reasoning that involves inferring plans that best explain sets of observed actions. Most existing approaches to plan recognition and other abductive tasks employ either purely logical methods that donot handle uncertainty, or purely probabilistic methods thatdo not handle structured representations. To overcome these limitations, this paper introduces an approach to abductive reasoning using a first-order probabilistic logic, specifically Markov Logic Networks (MLNs). It introduces several novel techniques for making MLNs efficient and effective for abduction. Experiments on three plan recognition datasets showthe benefit of our approach over existing methods.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leveraging Imperfect Explanations for Plan Recognition Problems;Explainable and Transparent AI and Multi-Agent Systems;2023