Enforcing Liveness in Autonomous Traffic Management

Author:

Au Tsz-Chiu,Shahidi Neda,Stone Peter

Abstract

Looking ahead to the time when autonomous cars will be common, Dresner and Stone proposed a multiagent systems-based intersection control protocol called Autonomous Intersection Management (AIM). They showed that by leveraging the capacities of autonomous vehicles it is possible to dramatically reduce the time wasted in traffic, and therefore also fuel consumption and air pollution. The proposed protocol, however, handles reservation requests one at a time and does not prioritize reservations according to their relative priorities and waiting times, causing potentially large inequalities in granting reservations. For example, at an intersection between a main street and an alley, vehicles from the alley can take an excessively long time to get reservations to enter the intersection, causing a waste of time and fuel. The same is true in a network of intersections, in which gridlock may occur and cause traffic congestion. In this paper, we introduce the batch processing of reservations in AIM to enforce liveness properties in intersections and analyze the conditions under which no vehicle will get stuck in traffic. Our experimental results show that our prioritizing schemes outperform previous intersection control protocols in unbalanced traffic.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficiency and Safety of Traffic Networks Under the Effect of Autonomous Vehicles;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-12-11

2. A Dynamic Programming Algorithm for Grid-Based Formation Planning of Multiple Vehicles;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling;Sensors;2023-01-29

4. Multiagent Meta-level Control for Adaptive Traffic Systems: A Case Study;Transportation Research Procedia;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3