Learning Instance Specific Distance for Multi-Instance Classification

Author:

Wang Hua,Nie Feiping,Huang Heng

Abstract

Multi-Instance Learning (MIL) deals with problems where each training example is a bag, and each bag contains a set of instances. Multi-instance representation is useful in many real world applications, because it is able to capture more structural information than traditional flat single-instance representation. However, it also brings new challenges. Specifically, the distance between data objects in MIL is a set-to-set distance, which is harder to estimate than vector distances used in single-instance data. Moreover, because in MIL labels are assigned to bags instead of instances, although a bag belongs to a class, some, or even most, of its instances may not be truly related to the class. In order to address these difficulties, in this paper we propose a novel Instance Specific Distance (ISD) method for MIL, which computes the Class-to-Bag (C2B) distance by further considering the relevances of training instances with respect to their labeled classes. Taking into account the outliers caused by the weak label association in MIL, we learn ISD by solving an l0+-norm minimization problem. An efficient algorithm to solve the optimization problem is presented, together with the rigorous proof of its convergence. The promising results on five benchmark multi-instance data sets and two real world multi-instance applications validate the effectiveness of the proposed method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A linear primal–dual multi-instance SVM for big data classifications;Knowledge and Information Systems;2023-08-26

2. Scalable Multi-Instance Multi-Shape Support Vector Machine for Whole Slide Breast Histopathology;2022 IEEE International Conference on Knowledge Graph (ICKG);2022-11

3. A Linear Primal-Dual Multi-Instance SVM for Big Data Classifications;2021 IEEE International Conference on Data Mining (ICDM);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3