Spectral Rotation versus K-Means in Spectral Clustering

Author:

Huang Jin,Nie Feiping,Huang Heng

Abstract

Spectral clustering has been a popular data clustering algorithm. This category of approaches often resort to other clustering methods, such as K-Means, to get the final cluster. The potential flaw of such common practice is that the obtained relaxed continuous spectral solution could severely deviate from the true discrete solution. In this paper, we propose to impose an additional orthonormal constraint to better approximate the optimal continuous solution to the graph cut objective functions. Such a method, called spectral rotation in literature, optimizes the spectral clustering objective functions better than K-Means, and improves the clustering accuracy. We would provide efficient algorithm to solve the new problem rigorously, which is not significantly more costly than K-Means. We also establish the connection between our method andK-Means to provide theoretical motivation of our method. Experimental results show that our algorithm consistently reaches better cut and meanwhile outperforms in clustering metrics than classic spectral clustering methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. View-unaligned clustering with graph regularization;Pattern Recognition;2024-11

2. Unsupervised selective labeling for semi-supervised industrial defect detection;Journal of King Saud University - Computer and Information Sciences;2024-10

3. A comprehensive survey of fast graph clustering;Vicinagearth;2024-09-13

4. High-order graph fusion for multi-viewclustering;SCIENTIA SINICA Informationis;2024-09-01

5. Fuzzy Clustering From Subset-Clustering to Fullset-Membership;IEEE Transactions on Fuzzy Systems;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3