Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs

Author:

Yu Jingjin,LaValle Steven

Abstract

In this paper, we study the structure and computational complexity of optimal multi-robot path planning problems on graphs. Our results encompass three formulations of the discrete multi-robot path planning problem, including a variant that allows synchronous rotations of robots along fully occupied, disjoint cycles on the graph. Allowing rotation of robots provides a more natural model for multi-robot path planning because robots can communicate.Our optimality objectives are to minimize the total arrival time, the makespan (last arrival time), and the total distance. On the structure side, we show that, in general, these objectives demonstrate a pairwise Pareto optimal structure and cannot be simultaneously optimized. On the computational complexity side, we extend previous work and show that, regardless of the underlying multi-robot path planning problem, these objectives are all intractable to compute. In particular, our NP-hardness proof for the time optimal versions, based on a minimal and direct reduction from the 3-satisfiability problem, shows that these problems remain NP-hard even when there are only two groups of robots (i.e. robots within each group are interchangeable).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DMS*: Towards Minimizing Makespan for Multi-Agent Combinatorial Path Finding;IEEE Robotics and Automation Letters;2024-09

2. Cluster-based Multi-robot Task Assignment, Planning, and Control;International Journal of Control, Automation and Systems;2024-08

3. Multi-AGV Motion Planning Using Greedy Search Algorithms and Learned Heuristics;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

4. Multi Agent Pathfinding for Noise Restricted Hybrid Fuel Unmanned Aerial Vehicles;2024 American Control Conference (ACC);2024-07-10

5. Improved Communication and Collision-Avoidance in Dynamic Multi-Agent Path Finding;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3