Preventing Unraveling in Social Networks Gets Harder

Author:

Chitnis Rajesh,Fomin Fedor,Golovach Petr

Abstract

The behavior of users in social networks is often observed to be affected by the actions of their friends. Bhawalkar et al. (ICALP '12) introduced a formal mathematical model for user engagement in social networks where each individual derives a benefit proportional to the number of its friends which are engaged. Given a threshold degree k the equilibrium for this model is a maximal subgraph whose minimum degree is at least k. However the dropping out of individuals with degrees less than k might lead to a cascading effect of iterated withdrawals such that the size of equilibrium subgraph becomes very small. To overcome this some special vertices called "anchors" are introduced: these vertices need not have large degree. Bhawalkar et al. considered the Anchored k-Core problem: Given a graph G and integers b, k and p do there exist sets of vertices B, H such that B is a subset of H, size of B is at most b and size of H is at least p, and every vertex v which is in H but not in B has degree at least k in the induced subgraph G[H]. They showed that the problem is NP-hard for all k greater equal 2, and gave some inapproximability and fixed-parameter intractability results. In this paper we give improved hardness results for this problem. In particular we show that the Anchored k-Core problem is W[1]-hard parameterized by p, even for k=3. This improves the result of Bhawalkar et al.  (who show W[2]-hardness parameterized by b) as our parameter is always bigger since p is greater equal than b. Then we answer a question of Bhawalkar et al. by showing that the Anchored k-Core problem remains NP-hard on planar graphs for all k greater equal 3, even if the maximum degree of the graph is k+2. Finally we show that the problem is FPT on planar graphs parameterized by b for all k greater equal 7.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Graph Computation: Anchored Vertex Tracking in Dynamic Social Networks (Extended Abstract);2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Finding Top-r Influential Communities under Aggregation Functions;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

3. Critical Nodes Identification in Large Networks: The Inclined and Detached Models;World Wide Web;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3