Author:
Cohen Liron,Wagner Glenn,Chan David,Choset Howie,Sturtevant Nathan,Koenig Sven,Kumar T. K.
Abstract
Multi-Agent Path Finding (MAPF) is an NP-hard problem that has been well studied in artificial intelligence and robotics. Recently, randomized MAPF solvers have been shown to exhibit heavy-tailed distributions of runtimes, which can be exploited to boost their success rate for a given runtime limit. In this paper, we discuss different ways of randomizing MAPF solvers and evaluate simple rapid randomized restart strategies for state-of-the-art MAPF solvers such as iECBS, M* with highways and CBS-CL.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献