Author:
Deng Yang,Lam Wai,Xie Yuexiang,Chen Daoyuan,Li Yaliang,Yang Min,Shen Ying
Abstract
Community question answering (CQA) gains increasing popularity in both academy and industry recently. However, the redundancy and lengthiness issues of crowdsourced answers limit the performance of answer selection and lead to reading difficulties and misunderstandings for community users. To solve these problems, we tackle the tasks of answer selection and answer summary generation in CQA with a novel joint learning model. Specifically, we design a question-driven pointer-generator network, which exploits the correlation information between question-answer pairs to aid in attending the essential information when generating answer summaries. Meanwhile, we leverage the answer summaries to alleviate noise in original lengthy answers when ranking the relevancy degrees of question-answer pairs. In addition, we construct a new large-scale CQA corpus, WikiHowQA, which contains long answers for answer selection as well as reference summaries for answer summarization. The experimental results show that the joint learning method can effectively address the answer redundancy issue in CQA and achieves state-of-the-art results on both answer selection and text summarization tasks. Furthermore, the proposed model is shown to be of great transferring ability and applicability for resource-poor CQA tasks, which lack of reference answer summaries.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献