SensEmBERT: Context-Enhanced Sense Embeddings for Multilingual Word Sense Disambiguation

Author:

Scarlini Bianca,Pasini Tommaso,Navigli Roberto

Abstract

Contextual representations of words derived by neural language models have proven to effectively encode the subtle distinctions that might occur between different meanings of the same word. However, these representations are not tied to a semantic network, hence they leave the word meanings implicit and thereby neglect the information that can be derived from the knowledge base itself. In this paper, we propose SensEmBERT, a knowledge-based approach that brings together the expressive power of language modelling and the vast amount of knowledge contained in a semantic network to produce high-quality latent semantic representations of word meanings in multiple languages. Our vectors lie in a space comparable with that of contextualized word embeddings, thus allowing a word occurrence to be easily linked to its meaning by applying a simple nearest neighbour approach.We show that, whilst not relying on manual semantic annotations, SensEmBERT is able to either achieve or surpass state-of-the-art results attained by most of the supervised neural approaches on the English Word Sense Disambiguation task. When scaling to other languages, our representations prove to be equally effective as their English counterpart and outperform the existing state of the art on all the Word Sense Disambiguation multilingual datasets. The embeddings are released in five different languages at http://sensembert.org.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GC-PCWR+ for Word Sense Disambiguation;2024 International Conference on Asian Language Processing (IALP);2024-08-04

2. A survey on semantic processing techniques;Information Fusion;2024-01

3. Models and Strategies for Russian Word Sense Disambiguation: A Comparative Analysis;Lecture Notes in Computer Science;2024

4. Challenges and Overcoming Methods for Word Sense Disambiguation;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18

5. Connecting AI: Merging Large Language Models and Knowledge Graph;Computer;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3