Unsupervised Attributed Multiplex Network Embedding

Author:

Park Chanyoung,Kim Donghyun,Han Jiawei,Yu Hwanjo

Abstract

Nodes in a multiplex network are connected by multiple types of relations. However, most existing network embedding methods assume that only a single type of relation exists between nodes. Even for those that consider the multiplexity of a network, they overlook node attributes, resort to node labels for training, and fail to model the global properties of a graph. We present a simple yet effective unsupervised network embedding method for attributed multiplex network called DMGI, inspired by Deep Graph Infomax (DGI) that maximizes the mutual information between local patches of a graph, and the global representation of the entire graph. We devise a systematic way to jointly integrate the node embeddings from multiple graphs by introducing 1) the consensus regularization framework that minimizes the disagreements among the relation-type specific node embeddings, and 2) the universal discriminator that discriminates true samples regardless of the relation types. We also show that the attention mechanism infers the importance of each relation type, and thus can be useful for filtering unnecessary relation types as a preprocessing step. Extensive experiments on various downstream tasks demonstrate that DMGI outperforms the state-of-the-art methods, even though DMGI is fully unsupervised.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous Graph Contrastive Learning With Meta-Path Contexts and Adaptively Weighted Negative Samples;IEEE Transactions on Knowledge and Data Engineering;2024-10

2. A Teacher-Free Graph Knowledge Distillation Framework With Dual Self-Distillation;IEEE Transactions on Knowledge and Data Engineering;2024-09

3. Motif-Based Contrastive Learning for Community Detection;IEEE Transactions on Neural Networks and Learning Systems;2024-09

4. SNCA: Semi-Supervised Node Classification for Evolving Large Attributed Graphs;Big Data Mining and Analytics;2024-09

5. HiGPT: Heterogeneous Graph Language Model;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3